раздел статистического анализа многомерного (См.
Статистический анализ многомерный)
,. объединяющий методы оценки размерности множества наблюдаемых переменных посредством исследования структуры ковариационных или корреляционных матриц. Основное предположение Ф. а. заключается в том, что корреляционные связи между большим числом наблюдаемых переменных определяются существованием меньшего числа гипотетических ненаблюдаемых переменных или факторов. В терминах случайных величин - результатов наблюдений
X1,..., Xn общей моделью Ф. а. служит следующая линейная модель:
(*),
,
где случайные величины fj суть общие факторы, случайные величины Ui суть факторы, специфические для величин Xi и не коррелированные с fj, а εi; суть случайные ошибки. Предполагается, что k < n задано, случайные величины εi независимы между собой и с величинами fj и Ui и имеют Еεi = 0, Dεi = σ2i. Постоянные коэффициенты aij называются факторными нагрузками (нагрузка i-й переменной на j-й фактор). Значения aij, bi, и σ2i считаются неизвестными параметрами, подлежащими оценке. В указанной форме модель Ф. а. отличается некоторой неопределённостью, т.к. n переменных выражаются здесь через n + k других переменных. Однако уравнения (*) заключают в себе гипотезу о ковариационной матрице, которую можно проверить. Например, если факторы fj некоррелированы и cij - элементы матрицы ковариаций между величинами Xi, то из уравнений (*) следует выражение для cij через факторные нагрузки и дисперсии ошибок:
,
.
Т. о., общая модель Ф. а. равносильна гипотезе о ковариационной матрице, а именно о том, что ковариационная матрица представляется в виде суммы матрицы А = {aij} и диагональной матрицы Λ с 2 элементами σ2i.
Процедура оценивания в Ф. а. состоит из двух этапов: оценки факторной структуры - числа факторов, необходимого для объяснения корреляционной связи между величинами
Xi, и факторной нагрузки, а затем оценки самих факторов по результатам наблюдения. Принципиальные трудности при интерпретации набора факторов состоят в том, что при
k > 1 ни факторные нагрузки, ни сами факторы не определяются однозначно, т.к. в уравнении (*) факторы
fj могут быть заменены любым ортогональным преобразованием. Это свойство модели используется в целях преобразования (вращения) факторов, которое выбирается так, чтобы наблюдаемые величины имели бы максимально возможные нагрузки на один фактор и минимальные нагрузки на остальные факторы. Существуют различные практические способы оценки факторных нагрузок, имеющие смысл в предположении, что
Xi,..., Xn подчиняются многомерному нормальному распределению с ковариационной матрицей
С = {
сij}.
Выделяется
Максимального правдоподобия метод, который приводит к единственным оценкам для
cij, но для оценок
aij даёт уравнения, которым удовлетворяет бесчисленное множество решений, одинаково хороших по статистическим свойствам.
Ф. а. возник и первоначально разрабатывался в задачах психологии (1904). Область его приложения значительно шире - Ф. а. находит применение при решении различных практических задач в медицине, экономике, химии и т.д. Однако многие результаты и методы Ф. а. пока ещё не обоснованы, хотя практики ими широко пользуются. Математическое строгое описание современного Ф. а. - задача весьма трудная и до сих пор в полной мере не решенная.
Лит.: Лоул и Д., Максвелл А., Факторный анализ как статистический метод, пер. с англ., М., 1967; Харман Г., Современный факторный анализ, пер. с англ., М., 1972.
А. В. Прохоров.